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Abstract—A time domain direct boundary integral equation method (BIEM) for Biot's linear theory
of vonsolidation is considered. The potential representation of the solution is used not only for
obtaining numerical solutions but also for investigating the behavior of the solution. The obtained
intormation concerning the behavior of the solution is utilized to implement an accurate BIEM. A
numerical example confirms the applicability of the present formulation.

I. INTRODUCTION

Analysis of consolidation nowadays is synonymous to the deformation analysis of a skel-
cton -luid system. Therefore, many important problems in soil mechanics require analysis
of this type since the coupling of the soil skeleton deformation and the pore ftuid motion
characterizes the mechanical behavior of soil. Among various theorics to describe this
coupling, Biot's lincar theory (Biot, 1941) is popular because of its refative simplicity and
generality. A number of numerical methods have been proposed for this theory so far,
among which finite clement methods are well aceepted (Sandhu and Wilson, 1969).
However, these methods are not without accuracy problems. For example, some FEM
formulations are known to have difticulty in computing carly time solutions. [t would
therefore be worthwhile to develop other numerical methods of solution for Biot's theory.
This motivated us to investigate a BIEM in Biot's theory.

BIEM rclers to a method of numerical analysis based on a certain potential rep-
resentation of the solution of a certain mathematical problem. As the name implies, it
converts the original problem into an integral cquation defined on the boundary of the
domain under consideration. So far the reduced dimensionality thus achieved has been
emphasized as an advantage of this approach. In the present authors’ opinion, however,
equally important is the fact that the potential representations used in BIEM are essentially
exact solutions of the problem. It is therefore conceivable that BIEM itself provides infor-
mation concerning the behavior of the solution. If it does, one may then utilize the infor-
mation thus obtained to implement an accurate BIEM. The purpose of this paper is to see
i such a “feed buck process™ is possible in BIEM tor Biot's theory.

As 1s usually the case in applicd mechanics, an investigation of the behavior of the
solution is made casier when one works with quantities having a clear physical meaning
such as the spatial coordinate and time. This suggests the use of a time domain approach,
although some integral transformations with respect to time may lead to a practical numeri-
cal method of solution. (Sce Cheng and Liggett (1984) for such an attempt.) Also., we have
to deviate from practical approaches such as those proposed by Banerjee and Butterfield
(1981), Kuorki et al. (1982) and Garcia-Suarez and Alarcon (1982) which use BIEMs for
the heat equation and clastostatics. This is because the solutions of Biot's cquations are
known to behave differently from thosce of heat equations or elastostatics. Hence we are led
to the so-called time domain direct BIEM. The carliest attempt at this approach was made
by Predeleanu (1981) who used a potential representation for the velocity of the soil
skeleton. However, this is not a very convenient choice for numerical analysis because the
velocity of the soil skeleton is known to behave like Dirac’s delta as a function of time when
the given data jump suddenly. In addition his formulation uses the pore pressure as the
initial condition. which means that his method almost always requires some volume integral
evaluation : as is known. the initial pressure seldom vanishes. This consideration motivated
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the development of another time domain direct BIEM for Biot’s theory (Nishimura, 1985).
which reflects both the mathematical and physical properties of Biot’s theory in 2 more
natural manner than the predecessors do. Actually. this formulation is free of the drawbacks
in Predeleanu’s formulation. Also noteworthy is the recent work by Cheng and Predeleanu
(1987) whose BIE formulation is analogous to the one in Nishimura (1983).

The detail of Nishimura’s analysis, however, has not been published so far except in
an sketchy article (Nishimura, 1987). In view of this, we attempt to present here the full
account of this theory. together with a recent numerical result. Specifically. we begin this
paper by constructing the potential representations of the solution of Biot's equations
guided by the previous analysis (Nishimura. 1985). We then proceed to the discussion of
the initial fields and the initial behavior of the pore pressure on the boundary. This
investigation discloses the structure of the singularity of the fluid velocity on the boundary.
Namely. we shall see that the fluid velocity on the boundary shows a ™' = singularity (¢:
time) the multiplying factor of which is computed from certain limiting values of pore
pressure. All these results are given in forms valid in the fully anisotropic cases: this
generality is achieved with the help of the method of the Fourier transform. We then restrict
our attention to the 2D isotropic case and discuss a numerical method based on our
formulation. This paper concludes with a few remarks after showing a numerical example.

2. STATEMENT OF THE PROBLEM
The well-known equations of Biot can be written in forms familiar to soil engineers as
A*u-Vp = —f (n
diva+mp-K-VVp =g 2)
where u, p, £, g and K, m (2 0) stand for the displacement, pressure, body toree, (i — /K V)
( /¢ fraction of fluid which is assumed to be a constant: /: rate of fluid injection per unit
volume), permeability tensor and the compressibility of the fluid, respectively. (See (¢) in
Scction 8 for other versions of Biot's cquations.) The symbol A* stands for the Navier
operator defined by

A*u:=div C[Vu] (u: vector, C[Vu],;:= C, .0k 1)) 3)
where C is the elasticity tensor (fourth order) which is assumed to be constant. We also
assume the usual symmetry and positive definiteness for both C and K. and use  for the

time derivative (* = d/de, ¢: time; we shall also use s to indicate a value of 1).

[t is plain to sce that the following identity holds for any sufficiently smooth vectors
u, u* and scalars p, p*:

J-j fi*-s—§*-u—p*n-KVp+n-K(Vp*)p! dS ds
s S0
=Jj (0% (A*u—Vp) — (A*a* + Vp*) "u
<, Jn
+p*(div a+mp—K-VVp) — (div u* —mp* —K-VVp*)p} d}" dt

—L [p*(div u+mp)}:: dV 4)

where D is an open domain in RY (V=2 or 3) with a smooth boundary D,
[]s: = (s2) =~ (s)). s and §* are the traction and “"adjoint™ surface traction defined by
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s = (C[Vu]-1p)n, §* = (C[{Vu*]+1p*)n (5a,b)

and s, and s are numbers, respectively.

As suggested by eqn (4) we seek a solution of the following initial boundary value
problem.

Find a regular solution (u, p) of eqns (1) and (2) in D x (¢ > 0). subject to an initial
condition

(diva+mp)|,.o=6 inD (6)

and boundary conditions for 1 > 0

u=u, on ¢éD,
s=s§, on ¢D,. (¢D,udD, = dD, éD, N D, = ¢)
P =po on ¢D,

ri=—n*KVp=r, onéD,
(éD,véD, =0dD. D, néeD, = ) (7a-d)

where 0. u,. 8. po and r, are given functions.
By the word “regular™ we mean smoothness in x in addition to the following.

(1) uand pin D x (¢t > 0) are piccewisc smooth in ¢ for a fixed x. In addition, these
functions approach zero sufficiently quickly as [x] — o0 if D is unbounded.

(2) Forpointsxe (0D, v dD,) n (8D, U dD,) = @Dy, u, s and psatisfy the same smooth-
ness condition as in (1) except that “*x e D™ is replaced by “xe D", As to dp/cn and r, we
allow them to have singularitics of the following forms:

M
Y C)H(t=s)(t~s)" (s =0) (8)

=)

where C,(x) are “nice” functions, s,(0 € i £ M) are the values of r where the solution suffers
discontinuity, H(*) is the step function and f; are constants such that

Bi>-1 9)

respectively. Equation (9) implies that the amount of the fluid flow through ¢D in an
infinitesimal time interval must be infinitesimal.

(3) u, s, p, &p/in on 0D may have singularities near points where the type of boundary
conditions changes, but the order of the singularity is sufficiently small that the following
arguments are justificd.

Accordingly, we specify the data u,, So. po. ¢o and 0 keeping consistency with conditions
(1)-(3). As to fand g, we assume piecewise continuity in ¢ for a fixed xe D = D+éD.

The uniqueness of the solution to this problem is easily established by using the
standard argument. Indeed, the solution to our problem is totally unique except when
0D, = ¢ where the solution may include an arbitrary rigid motion, and when m =0,
éD, = ¢D, = ¢ where p is determined to within an additional constant.

The physical meaning of the statement of our problem may be obvious except for the
initial condition in eqn (6). To interpret this formula, we assume that there was a certain
consolidation process going on before ¢ = 0. For example we haveu=0,p=0for7 <0
if the soil was at rest before the loading begins. One easily shows that the following holds
(Nishimura, 1987)
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(div u+mp)|,_o- = {divu+mp)|,., . (10)
Since the left-hand side of eqn (10) is identified with the left-hand side of eqn (6). we have
0 = (divu+mp)|,_, . (1

In particular we have § = 0 it the soil is with a quiescent pust.

3. FUNDAMENTAL SOLUTIONS AND INTEGRAL REPRESENTATION OF SOLUTION

Let U. V. P and Q be functions which satisfy the “causality” (i.e. U. etc. vanish for

t < 0)and
A* —Vé/t UV]  [wwméx)y 0 ] (1)
-V —mit+K-VV [P Q] 0 O(1)3(x) -

where J(°) is the Dirac delta. We call U, V. P and Q the fundamental solutions for eqns (1)
and (2). These fundamental solutions can casily be obtained by using the Fourer transtorm.
Namely, we have

U=0()U,+#
V=3V, + 7"

a* &g (,.“.,,>

> ~. ! L
P=—iH0OE. <,”+,§~A* "(&)¢

| .
— ‘-‘ 1} . . v LR -;2
Q= HIO#, <m+i§'A* "(&)& ¢ > (132 &)

where

.l A* (HE®A* (8¢
AT = A (e )

:'<
Vo= & < i 08 )

m4EA* N (E)E

W=

-

¢ K¢ G
* ! £ * 1 U . o S G
’I(’)A (§)S®A (:)g("'_‘_E.A* I(é)é)l ¢ >

o s $-K¢ o )
. - -1 * -1 > R 41 .
1= </1(:)|A (‘:)é(nwc-m o . (14a d)

Also, i, ' indicates the Fourier inverse transform (& — x), A* (&) the inverse of the matrix
obtained by replacing V in A* by &, and

& K¢

GO = v g "

For N = 2 onc would either have to interpret the non-integrable integral included in the
Fouricr inversion in eqn (14a) as the finite part (Gel'fand and Shilov. 1964) or an integral
performed on a path in a complex plane which circumvents the singular point of the
integrand (i.c. origin) (Mizohata. 1973). Note that I and Q can be expressed as
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P(x.1) = Po(x)3(0) +2(x. 1)
O(x. D) = Qu(xX)3(1) + 2(x. 1) (16a.b)

where

P(J = \'l)" :.y = ‘i‘

-t I
Qo =8 (m+¢-A*- ‘(:)«:)

) = ~. ! ¢ K¢ -G:n) )
2= —H()§: ((m+§-A*“(§)¢)3e s (17a-d)

Equations (16) and (17) are obtained with the help of eqns (13¢) and (13d).

The Fourier transforms of U, V.. Py and Q4 are homogencous functions of order -2,
— 1. — 1 and 0, respectively. The theory of Fourier transforms of homogeneous functions
then tells the following (Mizohata, 1973).

() U, ts & homogeneous function of order — | when N = 3. When N = 2, U, has an
estimate

U € C+Cy log Ix] (Cy. C;: constants) (18)

near the origin,
(i) V. Py and VU, are homogencous (unctions of order | — N,
{1i1) Q, can be expressed as

Qu(x) = Cod(x) +v.p. Qy(x) (19)
where
C "~L~f &.0:(8) dS
Q - §S,v| .\,‘VV l?x‘ i}
v.p. 0u(x) = § {F.Q0(8) ~Cp} (204. b)

Sy is the N-dimensional unit sphere, |Sy] its surface arca and v.p. indicates Cauchy’s
principal value, respectively. Also, Q4(x) is a homogencous function of order — N the mean
vitlue of which over 8y vanishes. We may sometimes write @, for Q(; since they are identical
except at the origin. VY, also has an expression analogous to egn (19).

We next consider the time-dependent kernels (4. ete.) in eqns (13) and (14). A useful
observation is that these kernels are written as

. - 1 . .,
& F(@ e = (’»n;,vaF(é) ¢ GO dE 1> 0 1

where F(&) is a certain homogencous function of ordern (=1 €n <2 (n= -1t forP.2
for V7, ctc.). Writing this integral as /(x. 1) we can show that /(x, 1) is a smooth function
for a positive ¢ which satisfics

l
H(x. )] < const. ;'rfl—;-lj.-;;-_‘y (22

for x| # 0. This proves that %, V4%, ¥", V", P, #, VP, Q, 2 and VQ are smooth functions
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for a non-zero ¢ and are integrable in ¢ for a fixed |x| # 0. We also note that from eqns
(13¢). (13d). (17a) and (17¢) 1t follows that

(P(x.1). Q(x. 1)) = (Py(x). Qy(x)) as ¢]0. (23)

We now proceed to the construction of the potential representations for u and p. To
this end, we introduce functions U*, V*, P* and Q* defined as

[U*(x‘r) \"*(x.t)]_ [—(’(—x.—t) —\'"(——x.—-r)] 24)
P*(x.t) Q*x.t)|] | P(—=x.-1) O(—x. -1 | -

These functions are easily seen to satisfy the “anti-causality” (i.e. U*, etc. vanish for t > 0)

and
A* \A U \"*:I_l:lé(t)d(x) 0 ] 2)
V.  —méCt—K-VV || P* O*] 0 3(o(x) | &

We then substitute U*, etc. into a*. etc. in eqn (4) with the help of eqn (24). This process
yiclds potential representations of the solution to eqns (1) and (2) in the tollowing forms:

u(x.s) = J Uy(x ~y)s(y.s) d.S‘—J

e

So(x.y)uly.s) dS

~

+ | Up(x=y)f(y.s) dV+J J "41'I(x—y..\'—t)s(y,t) de dS
Il D JO

o

- J ‘/"(x,y.s-/)u(y,r) dr dS—J‘ j P(x—y.s=nr(y.t) dt dS
Y JO

Jen Jo

~

+ J R(X,y.s—0)p(y.1) dt d5'+J

Jen n

j #(x—y,s—nf(y. 1) dr dV
0

~

+ J P(x—-y.s—nDy(y.t) dt dV+f P(x—y.s)0(y) dV (26)
0 1

J»

and

px,s) = J Vo(x —y)-s(y,s) dS—J‘ Ty(x.y) u(y.s) dS
D D

N
~

+ V(,(x——y)'f(y..\')dV+j j ‘I"(x—y,x-—l)'s(y.l) dr dS
D JO

Jo

- f F(X ¥y . s—1)u(y. 1) de dS—j | Q(x—y.s—=tyr(y,r)dt ds
Jon Jo ' Ju

+ f Wix,y.s—0p(y.1) de dS+j J VI (x—y.s—1)-f(y, 1) dr dV
0 D Jo

Jon

+ JQ(X—y.s—t)y(y.l) drdV+J O(x—y.5)0(y) dV. x¢éD 2N
n Jo n

o

where S,. .. To. .7 . R and } are kernels defined by
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so.,<x..v.s)} é [Umk(x—.v.s)} [Po,(x—y.w}
=] C ity ;
I:T.,,(x.y.s) Crl Valx—y.5) |/ it (¥) + Qo(x—y.s) n,(¥)

Fxys)| ¢ [Hu(x—y.s5) R EAL SR ‘
[.f,(\ ).s):l T ey [1"k(x—-y. s)]C’”k’””(")+[:2(x-)'.s) n(¥)
R.(x.y.5) _ ¢ | P{x=y.5) | ) )
[W(x.y.s)]— -E;[Q(x-—y.s)} i (y) (28a—c)
and
. (u.p) xeD s
WP =10.0) xeD = RMD. (29)

Equations (26) and (27) will be used mainly as the basis for our boundary integral
equation method (BIEM) to be discussed later. However, these equations are interesting
in their own right. For examples one sees that egns (26) and (27) express u and p in terms
of space (0D or D) integrals and space-time integrals. The former are discontinuous with
respect to time when the data in eqns (7) jump as functions of time. whereas the latter are
not. This indicates that the space integrals correspond to instantancous response, and the
space time integrals describe the dependence of u and p on the history. In this way eqns
(26) and (27) decompose the solution into terms of different physical origin.

Finally. we note that egns (26) and (27) are totally free of volume integrals when the
soil is subjected to a sudden loading under vanishing body force and no fluid injection. This
“boundiry only™ property is onc of the advantages of our formulation in numerical analysis.

4 INITIAL FIELDS

We now discuss the initial behavior of the solution to our initial boundary value
problem. The result of this investigation will be used later not only for computing the initial
ficld but also for setting the initial value for boundary quantitics u, s and p in BIEM. Some
definitions and notation are introduced first. By “initial field™ we mean

Iillllll pIX,s), x€e€D 30)

etc. A limit of this form for a certain fixed point in R" is called the initial value. The initial
condition is what we “prescribe™, but the initial ficld is what we “compute™. In other words,
the initial field is part of the unknowns. The “boundary value™ of a certain ficld, say p(x, s),
indicates the limit

lim  p(x.s) 3hH

seDor D) Xy,

where x,, is a point on the boundary. Hence the boundary value of the initial ficld of p(x, )
18

lim  lim p(x.s) 32)

e Dy exy, sL0
while the initial value of the boundary value of p(x.s) is

im  lim  p(x.s). (33)

L0 N(eED)—x,

In the sequel we shall write
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p(x.0):= lir3)1 p(x.s). (xeRY)

pix,.sy:= him p(x.s). (x,€lD.s>0). (34a.b)

el -y,

Our tools for the investigation of the initial ficlds are the equations

a(x.0) =J Uon(x—y)s(y.0) dS—f So(x.¥)u(y.0) dS
N D

i
~

+f Ua(x=¥)f(y.0) d V-+-J Py(x=¥)(y) db" (35)
n

n

and

To(x—¥) u(y.0) d5+f Va(x—y) f(_\O) dy
‘

)

f(x.0) = J Vo(x—y) s(y.0) dS——j
N

Y

+CL,(7(x)+v.p.jQ,,(x~y)()(y)dl'. x¢échD  (36)
"

which we obtain by letting s | 0 in egns (26) and (27) with the help of eqns (19)-(23), where
v.p. indicates the integrat in the sense of Cauchy's principal value.

Equations (35) and (36) are the representations of the initial ticlds in terms of the
initial values of the boundary values of w and s. It is important to note that there is no «
priori reason Lo assume

lhim u(x,0) = u(x,.0)

A 1)) ey,

lim  p(x,0) = p(x,.0) (xyelD) (37a.b)

(DY wyy,

at this moment. Actually, we shall sce that egn (37a} is correct, but the analysis in Section
5 proves that egn (37b) s incorrect.

We now proceed to the computation of the boundary values of the expressions in eqns
(35) and (36) with the help of egns (A1)-(AS8). (See Appendix, where we have listed several
uscful formulae obtained by using the methods reported in Nishimura and Kobayashi,
19874, b.) We casily obtain

lima(x.0) = F lu(x,.0) +j Uy(xy,—y)s(y.0) dS
)

LR W

—v.p.f Su(xo. y)u(y.0) dS~+-J- Ug(xqg—y)f(v.0) dV
¥ 14

+j Py(xy—=¥)(y) dV. x,ecDy (38)
3l

o A* '(n)n
lim p(x.0) = + *$(x,. 0)

]
N 2m+n-A* Y(n)n

H+

] (div u(xy. 5) fé* "(n}n'C[Vu(x(,..v)]n
2\ m+ncA* ‘(o



A boundary integral equation method for consolidation problems 9

1 - I
e

+ V.p. J\ ‘i"i}{‘il “y) ’S(_V. 0) dS"“p.f. J‘ Tt)(x(). y) - u()’. 0) dS
At D

~

+j v‘)(x“ _.‘) * f()’. 0) d;"*‘ V.p.‘ j‘ Q()(X()_}Y)O(y) dl.. x“GEDR (39)
(4 D

where p.f. indicates the finite part. v.p.~ the principal value integral defined in eqn (A9)
and the upper (lower) sign the approach from the exterior (interior) of D, respectively.
From egn (38) it follows that

im w(x,0)= lim ax.0)— lm &x.0)
Xy, xisliy—x, seD =Xy,
=u(x,.0). XqeDg (40)

where we have used eqn (29). In the same manner we use egn (39) to obtain

im p(x.0) = lim p(x,0)- hlm  j(x,0)

XN exy . Nis I3 an, NPT ey

A* "(n)n B 0
m+n-A* '(n)n S(%o.0)

(div u(x,.5) —A* '(mn- C[Vu(x,.s)n
m+a-A* '(n)n

0(x)
m+a-A* Yan’ 4
Also, we can write these limits in different forms. Namely, we have
im p(x,0) = lim #(x,00+ lim j(x.0)
N ey, RYEY IR st fp ey,
+Co .
=2{ Hx)+v.p. | Vix,—y)s(y,0) dS
- D
—p.i’.f TolXp. ¥)u(y. 0) dS+J Vio(xg—13)f{y,0) d¥
g f3
+v.p. j Qu(xn“‘)‘)()(y) d V). Xf,EODR (42)
I

and a similar result for u. which we shall omit here.

We next consider how one computces the initial ficld. As can be seen casily, one just
has to determine u{x,.0) and s(x,.0) on the boundary and use eqns (35) and (36) to
compute the initial ficld. Hence we are led to the question of how to determine u(x,, 0) and
s(xy. 0) for x,€D. Equations (7a) and (7b) show that half of these quantities are given as
the boundary data. but the rest of them are still to be determined. We can, however, easily
obtain an integral equation to determine these quantities. Namely. we use the exterior limit
in eqn (38) which gives
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0= —éu(x‘..OH—J Uy(x,—¥)s(y.0) dS
D

Sy(xy. ¥)uly.0) dS+J Uy(x,—y)f(y.0) dV
"D

2]

~

—v.p.

+J Py(x,—y)0(y) dV. xy€(Dg. (43)
D

Note that it is not necessary to consider a BIE obtained from eqn (36) for determining the
initial field since we already have enough equations. This is in contrast to the subsequent
analysis to be discussed in Section 5 where one has to solve two integral equations sim-
ultaneously. As a cost for this saving, however, eqn (43) loses the uniqueness of the solution
when m = 0 and D has holes, although the solution to the original boundary value problem
is unique. This 1s because eqn (43) coincides with a BIE for elastostatics with given
volumetric strain #: the BIE for this problem is known to be nonunique (Kobayashi and
Nishimura. 1982). This purely mathematical difticulty. however. can be eliminated by using
remedies discussed previously (Kobayashi and Nishimura, 1982). After solving eqn (43)
for u(x,.0) and s(x,.0) (x,€cD). one may determine the boundary values of the initial
ficlds through eqns (40) and (41).

Finally, we remark that the initial behavior of the solution in D has been investigated
so far mainly from physical viewpoints in soil mechanics and in geophysics. For example
Rice and Cleary (1976) introduced some material constants so as to facilitate the physical
interpretation of the undrained response, or the initial behavior in our terminology. of a
fluid saturated porous media. The analysis in this section shows that egns (26) and (27)
provide a mathematical alternative tor investigating the behavior of the solutions, as well
as a method of computing them quantitatively.

5. BOUNDARY INTEGRAL EQUATIONS AND INITIAL PRESSURE ON THE BOUNDARY

In this section we consider the limits of eqns (26) and (27) tor s > ) as the observation
point x tends to a point x; on the boundary. This calculation determines the boundary
integral equations for consolidation problems, which will be used as a basis for the numerical
BIEM to be discussed later. We then let s (time) tend to zero in the BIEs thus obtained to
determine the relation between the limits in cgns (32) and (33). The result of this com-
putation will be used later to set the initial conditions for p and r on ¢D.

Itis now a simple matter to obtain the BIEs for our problem. Actually, by putting the
exterior limits inegns (26) and (27) equal to zero with the help of eqns (A1)-(A14), we
obtain

lu(x.s) = J U, (x —y)s(y.s) dS—v.p.J
D

N

Suix. yu(y.s) ds
+J U(l(x—y)f(_\r'.A’) d V—{-J J 1/./(x__y“‘.__1)5(y. 0 dr ds
n en Jo
_v.p.f f .f/'»(x.y,x_,)u(y',) dr dS—j j P(x—y.s—0)r(y.1) di dS
e Jo o Jo

+f f R(x,y.s—np(y.r) dt dS+J‘ f "I'/(x—-_v..\’—t)f(y.t) de dV”
o Ju D Ja

+J f P(x—y.s—ng(y.1) dr dV+J- P(x—y.5)(y) dV (44)
nJon D
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and

N

p(x.s) = v.p.f Vi{x~y}-sly.s) dS—p.f. L} Tol(x. ¥} uly, s} dS
+J:) Vy(x—y)f(y.5) dV+ v.p.J:D ‘[: 1 (x—y.s—1) s(y. 1) dt dS
—p.f L} j; F(x.y.s— 0D uly. f) dt dSm-J;D ': Q(x—y.5—0r(y.0) dt dS
+v.p. jn .{, Wix.y.s—nply.n) di dS+L£ Yx—y.s—1) fy. 0y de 4V

+J L Qix—y.s—Ngly.t) dt d!'+.[ G(x—y.5) 0y dV, xecD. (45)
¥ [

For s > (0 we solve eqns (44) and (435) simultancously using eqns (7} to determine boundary
quantitics completely.

We now et s tend to zero in these integral equations, One readily shows, with the help
of eqn (A20) and the comment below eqn (A 19), that this process applicd to egn (44) yields
egn (43). On the other hand a similar calculuation using egns (45), (A13) -(A19) and (A1)
leads to

Py 0) = lm)} Xy, 8)

= 2(V,p.j” Vol(xp—¥)*s(y.0) dSw«p.f.J‘ Tolxy y) uly, ) dS

i

C,
+J‘ Vo(xy~y) My, 0) dV+ ,;‘}' H{xyy+v.p f Oulxy—yMiy) dV
'L - I

- lim lim J (X —y. s —0r(y. 1) dt th). Xs ECDy. (46)

SIH xeen, G GH

This result establishes 4 relation between egns (32) and (33). Indeed, by comparing egns
{46) und {42} we obtain

m  p(x,0} = p{x4. 03+ 2 lim l&m[ J Oix—y.x—nirly, 1y dr dS, x,60D,.
G Jo

{3 eny S8 X exy

(+7)

Equation (47}, together with egn (A17), rules out the possibility of -1 < i< =172
{sec eqns (8) and (A18)). because p has to be finite by assumption. Also we see that eqn
(47) reduces to

i mn*Kn il |
‘(ql,l)t)“!:l“l‘ P(x,0) = p(xy.0) ~ (rwz;-;‘rf/i*“(—nﬁ) P(Xa) (48)

with the help of eqn (A17). where
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. ip
(X)) = lm J-(XL8) 8. (49)
s.Cn

Hence. we conclude

p= -1 (30)
as long as the limits in eqns (32) and (33) are both finite and different. In this case the
coefficient 7 of the ¢~ * singularity in ép/Cn (see eqn (49)) is obtained from eqn (48). If
B > — 1,2 holds. or. in particular. if x,e ¢ D, and r(x,. t) is bounded as a function of 1 (see
eqn (7d)). we necessarily have

lim  p(x.0) = p(x,.0). XoecDy 5

D)=y,

because 7(xy) = 0 in eqns (48) and (49).
Finally, we remark that eqn (48) implies

lim  p(x.0) # p(x,.0) (52)

X ) ey,

in general, which might look queer at first. As a matter of fact, it is not. Indeed. the process
of determining expression (32) discussed in Section 4 tells that expression (32) is independent
ol p, or ry (see cqns (7). Actually, expression (32) is determined only by u,,. s, fand 0
because one obtains expression (32) by solving egn (43) followed by the use of egn (41).
On the other hand we are supposed to specily p(x,. 0) = p, on &0, arbitrarily. Therefore,
P(xe. 0)on D, is independent of the data in eqns (6), (7a) and (7b) and, hencee, independent
ot eqn (41). Thercetore, we generally have eyn (52).

S Exanmple
In the case of isotropy we have

('://\I = ;"51/(SAI+,I(($IL(S[/+(sll‘s//\ )* A’l/ = /"()‘u (5311- b)

where (4, p0) and & are Lame’s constants and the permeability constant, respectively. Fur-
thermore, we assume m = 0. The one-dimensional motion

wy =w(xy 0. us=uy =00 p=ple.t) (54a-¢)
with initial and boundary conditions (see eyqns (6) and (7))

d“| -0
dxyj, oo

s =p" (constant), p=0onx, =0

op
u, =0, .’f' =0 onwx, =/ (h>0:constant) (55a-¢)
{

produces p given by (Terzaghi, 1943)

2" My N
pleeny =Y osin N exp (= Ar3T) (56)
e M h

where M = (Qm+ W)r/2. T, = ¢.4/h* and
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¢, = k(A+2u). (57)

A direct calculation using eqn (56) shows that

. _ 0
A‘,(Em,np('n’o) =P (58)
and
cp 0
CTI;(O. 1)~ =p'/(re.t) as t]0. (59)

Therefore, eqn (49) gives 7(0) = —p”/\/(nc,). On the other hand the boundary condition
at v, = 0 says

Ilir(!)1 p0.0) =0, (60)
Hencee by using

CA* ! 12 ) .
(ﬁ,.ﬁ.:K,',:");") = J(k(A+2u) (61)

which follows from eqns (3) and (53), we conclude that eqn (48) is satisfied.

6. NUMERICAL PROCEDURES

In this section we shall discuss a numerical method of analysis using the formulation
developed so far. We shall restrict our attention to the 2D isotropic case characterized by
egns (53a) and (53b), where the fundamental solution is available. Also, we shatll neglect
the compressibility of fluid (i = 0) following a common practice among soil engineers.

6.1. Fundumental solutions
We first determine the fundamental solutions. The Fourier inversion based on egns
(14) leads to (Nishimura, 1985; Cheng and Predeleanu, 1987)

Lo 1 Vp®Vp) kH(1) <l—c ‘)
U= n <— dp log o+ 4u o ! 2t

| —¢ ptder ¢ Pl
—-Vp®Vp ~~-~r-/;—:~ e — - 42‘_’ -

Vo _HW@per

V= (S(l) ?:Ti/) 87!('1‘12. - Vﬂ
I —_ a:ulr,,l
P = H(1) ( ————— --ﬁ;;)~-~~~-)v,,
eap:. et

where ¢, is a constant defined in eqn (57). p = |x—y|. d(¢) is Dirac’s delta and H(s) is the
step lunction, respectively. The V's in eqns (62) are with respect to x.
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6.2. Integral equations

In view of the possible initial singularity of r on ¢D it is preferable not to use integrals
involving r in egns (44) and (435) for numerical purpose. In the present analysis, we have
avoided this difficulty by using an integration by parts with respect to time. Namely, we
have replaced r in eqns (44) and (45) by

gix.s) = j r(x.1) dr {63)
O
with the help of identities
J‘ J. P(X—y.s—0r(y.1) dt dS
D Ju

= v.p. L, Pu(x—¥)g(y.s) dS+v.p.J J:] .i’(x——y. s—Ngly,s) de dS

Nt

f j Q{x—y.s—nr(y. 1) ds dS=J J .é"(x—}"\s'v-»!)q{y.s} dr dS., xedD
B U Iy JB

(64a.b)
where
; His)pe " ¥
Py == Ve (65)
8ne,s®
(G A R (66)
N,y = dnk 4“““ ‘\’3 s .

The apparent nonsymmetry of egns (64a) and (64b) is due to the assumption of isotropy,
with which @, is seen to vanish.t (See eqn (17¢).) Also the integrals in egns (44) and (45)
involving 8§, and W arc seen to converge in un ordinary sense due to the assumed isotropy
and incompressibility of the fluid.

One may doubt the effectiveness of eqn (45) for numerical applications because of the
apparently very strong singularity of the kernels. As a matter of fuct, this is not to be the
case. Indeed, the singularitics in the integrands cancel with each other reducing themselves
to integrable singularitics, as we shall see shortly.

6.3, Numerical methods of integration

We shall now implement a numerical method of solution of Biot's equations using the
formulation investigated so far.

Our method consists of the following steps (Nishimura ¢f al., 1986).

(1) We first compute the initial ficld. A direct BIEM for incompressible elasticity is
used to this end {Kobayashi and Nishimura, 1982). Namcly, we discretize eqn (43) by using
boundary conditions (7a) and (7b) and certain shape functions, solve the resulting algebraic
cquations for discretized u(x . 0) and s(x,,. 0), and then use eqns (35) and (36) to obtain the
initial ficlds.

We next compute the initial values of the boundary quantities u, 8. p and ¢ as a
preparation for the subsequent analysis in step (2). The first two, however. have been
obtained as solutions of eqn (43). and the inttial value of ¢ is zero by definition. Asto pon
¢ D, boundary condition (7¢) provides the answer. Finally, one uses eqns (48) and (7d) to

t Q4 = C3(x) to be precise, where Cis a constant.
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set the initial value of p on ¢ Dy after computing expression (32) with the help of the solution
of eqns (43) and (41). In the present context eqn (41) simplifies to

lim p(y.0) = 2y<0(x)—c-§;(x.0)>—5'n (67)

YD) ~xiecD)

where ¢ is a unit tangent vector to ¢D at x. As can be inferred from eqn (67) it is
convenient to use a sufficiently smooth shape function for usince eqn (67) includes tangential
differentiation.

As has been pointed out in Section 5, the integral equation for the initial field loses the
uniqueness of solution when D has holes. Correspondingly. the associated numerical equa-
tion becomes ill-conditioned. We therefore avoid this inaccuracy by using one of the
remedies discussed previously (Kobayashi and Nishimura, 1982).

(2) Let the solution be known up to a certain time s—A¢ > 0 where Ar >0 is a
constant. We now wish to obtain the solution at r = s(>0). To this end. we introduce time
interpolation functions () and Q.(¢) in the interval [s—Ar.s] in a way that

Q=1 Q-An=0
Q.(s) =0, Q.s—AnN =1 (68a-d)

are satisficd. One may then interpolate a function of ¢, say u(-. r), by
uC*. ) ~u(C.9)Q (O +u*.s—ANQ, (1) 69)

in [y —Ar, 5], where u(-, s — Af) is known, but u(-.s) may not be. It is then clear that the time
integration, together with approximations of the forms in eqn (69) applied to boundary
quantitics such as u, reduces egns (44) and (435) to integral equations of the following form :

J (kernels) « (quantities at £ = 5) dS = known functions. (70)
D

We shall henceforth call the transformation of this type ““time discretization™. After time
discretizing eqns (44) and (45), we apply the conventional BIE techniques using spatial
shape functions. The solution to the resulting simultaneous algebraic equations determines
the boundury quantitics at ¢ = s,

(3) Repeat step (2) by setting s+ At for the new s.

We next discuss our specific choice of the time interpolation function and the method
of integration. We here choose lincar time variation so as to keep the method simple. This
time variation also allows us to calculiate all the pertinent time integrals analytically. Our
next question is what the singularities of the kernels in eqn (70) are. We here consider only
the kernels which operate on u(s, 5) because they include the strongest singularitics one sees
in eqns (44) and (45). The kernel K (x.y) which operates on u(-, s) in the time-discretized
version of eqn (44) is

¥

K (x.y):= S.,(x.y)+J f/"(x.y.s—()(l - S—A—_[-’> ds an

s~

where we have used a linear time interpolation. A direct calculation using eqns (62) and
(28) then shows (Nishimura, 1987)

1 R
Ki(x.y) = 2—n—(:i-5;l)*p {1l +2(A+10)Vp @ Vp)(Vp ) + u(n ®@ Vp—Vp @ n)}

+0O(plogp) aspl0. (72)
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The singular term in this expression is seen to coincide with the elastostatic double layer
kernel (Kupradze. 1965). In the same manner we obtain a similar kernel (denoted by K )
in the time-discretized version of eqn (45) as

K.(x.¥) = T‘,(x.y)+J- T(X,¥y.5—1) (l - H) de
v - A A(

u
log 1 73
2ne At n log p+0(1) 73

for a small p. This shows that K,{x.y) has an integrable singularity at p = 0. As a matter
of fact., the method of Fourier transform used previously (Nishimura and Kobayashi.
1987a, b) shows that these conclusions concerning the singularities of K, and K, remain
valid in the general N-dimensional anisotropic case. We shall. however, not go into further
detail on this topic.

Now that we have shown the singularities of our kerncls to be the same as those of
elasticity. we may apply the techniques for evaluating the elastostatic singular integrals to
our integral equations. Namely, we may compute singular integrals in egns (44) and (43)
so that the discretized versions of eqns (44) and (45) are satisfied by some known solutions
of eqns (1) and (2). In clastostatics rigid translations have turned out to be a convenient
choice tor the "known solutions™ (Lachat and Watson, 1976). In consolidation, we may
use:

Rigid transtation

u=ue f(), p=0 (74a.b)
where ug is & constant vector, and f(1) an arbitrary function of time.

Uniform shear

u = (uniform simple shear) - /(). p=0. (75a.b)
This satisfics eqns (1) and (2) because divu = 0.

Uniform pressure
u=10, p=constunt. (76a.b)

p may be an arbitrary function of time il m vanishes.

Radial expansion

X

NG

u fy., p=0. (77a.b)

This is a solution of egns (1) and (2) when the material is isotropic.

Expressions (74)-(76) are interior solutions of ¢gns (1) and (2). while eqns (77) give
an exterior sofution of egns (1) and (2) it the origin is out of the domain D. In this statement
“exterior solution™ means a solution which is regular in an exterior domain, and “interior
solution™ stunds for a solution regular in a bounded domain. In using the method of
substitution onc has to remember that an interior (exterior) solution satisfies integral
cquations for interior (exterior) problems. One may, however, usc an exterior solution for
computing singular integrals in interior problems and vice versa. Indeed. one first adds u(p)
to the right-hand side of eqn (44) (eqn (45)) to obtain the BIE for an exterior problem
defined in the complement of D when D is bounded. The obtained BIE is satisfied by an
exterior solution. The method of substitution then computes some singular integrals in the
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BIE for exterior problems. However, this process computes singular integrals in the BIE
for interior problems at the same time because the exterior BIE and the interior BIE differ
only by non-integral terms. Note that we now have more known solutions than the number
of singular integrals (two in 2D) in eqns (44) and (45). As it turned out. however, use of
this technique to some of the logarithmically singular integrals increases the accuracy of
the numerical solution considerably. Hence we shall try to use as many of the above four
solutions as possible in the numerical example to follow.

7. NUMERICAL EXAMPLE

In this section we shall test the performance of the present method by solving a sample
problem. We consider a circular hole (radius = «) in an infinite plane. The infinite plane is
assumed to have a uniform initial stress " and a vanishing initial pressure. We then
“excavate™ a hole in a way that the following conditions are satisfied :

Iuitial condition

0=0. (78)

Boundary conditions

s=0, p=0 ondh. (79a.b)

A standard analysis shows that the displacement on the boundary is written as

acos ©

u = 1"1)1+T':’:+(T(|'|_f(.":)["(f))
4u
sin ©
= U\‘_;;]l T = (), =) F() (80)

where

. 1{=r e (G4 3y H (ka) + M B (ka)
nn=-,_ y RN 1 [T (Y dw
Qri) L oo \ A+ p)HY (ka) —ully) (ka)
k= J(iw/c,) (81a.b)

& is a small positive number, and //!"(?) is the Hankel function of the first kind. The
Cartesian axes used here are directed in the principal directions of ", and the angle © is
measured from the x,-axis. In the present analysis we have set tf, = —0.4p", 15 = —0.8p",
!, = 0, and v (Poisson’s ratio) = 0 where p" is a constant. We have used 32 lincar iso-
parametric boundary time clements of equal length. As we have found. this problem is
particularly sensitive to the accuracy of numerical integrations included in the BIEM
algorithm. Therefore, we have used the method of substitution with cqns (74). (75) and
(77) in order to compute not only v.p. integrals, but also some of the logarithmically
singular integrals.

5AS 25:1-8
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ot 0.5 (1u/ag)

Fig. 1. Deformation ol a circular hole in a prestressed infinite plane. Poisson’s ratio = 0.

Figure 1 shows the deformation of the boundary for several values of ¢ The out-most
circle represents the undeformed shape of the boundary. The lines in this figure show the
results obtained from eqn (80). The Fourier inversion involved in egns (81) has been carried
out with the help of FFT with 2048 duta. The symbols in the same ligure indicate two
serics of BIEM results, i.c. the displacements on &0 for 0 < ¢ t'a’ < 1 obtained with
e, Atfa? = 1100 and those for | < ¢ tfa’” < 10 obtained with ¢, Ar a” = 1;/10. This ligure
shows that the accuracy of our BIEM is satisfuctory. The CPU time for an analysis in 100
time steps was about 17 s with the VP400 of the Data Processing Center, Kyoto University.
Our computer code uses the fact that the pressure on the boundary vanishes, but is otherwise
completely general without taking advantage of the symmetry of the problem.

8. CONCLUDING REMARKS
(a) The main results of this paper are summarized uas follows,

(1) The solution to Biot's equations has the potential representation given by eqns
(26) and (27).

(2) The initial ficld, given by eqns (33) and (36), is computed with the help of the
BIE in cqn (43).

(3) &p/cnon ¢D may have a singularity proportional to¢ ' * as shown in eyn (48).
Equation (48) is uscful also for determining the initial value of p on ¢D.

(4) The present formulation provides an accurate BIEM,

12

(b) It is casy to extend the numerical method in Section 6 to the 3D case. The
fundamental solutions for the 3D case are given in Cleary (1977) (see also Rudnicki (1981)),
Cheng and Predeleanu (1987) and Nishimura (1987).

(¢) There are several versions of lincarized Biot's cquations. For example. Biot's theory
in its original form yiclds

A*u—2Vp =10
fdiva+mp—-K-VVp =10 (82a.b)
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in our notation (Biot, 1941), where x and § are constants. In eqns (82). we have omitted
the inhomogeneous terms (body force and fluid injection) for the sake of simplicity. The
formulation in Rice and Cleary (1976) also leads to eqns (82). Our governing equations.
eqns (1) and (2). with an assumption of m = 0 are used by many researchers and prac-
titioners. For example McNamee and Gibson (1960) use eqns (1) and (2) in slightly different
forms. However, the difference between eqns (82) and eqns (1) and (2) is not very important
mathematically because eqns (82) are equivalent to eqns (1) and (2). Indeed, the following
replacement reduces eqns (82) to eqns (1) and (2) (see eqn (7)) :

C m K Sy ry
—=C, —-om —-K —os, - (83a—e)
a

B

This shows that our analysis applies to various versions of Biot's theory with a minor
modification.

(d) Biot's theory of consolidation is closely related to coupled thermoelasticity in that
these theories are based on similar equations. Sladek and Sladek (1983) investigated several
BIEMs in various theories of linear thermoelasticity.
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APPENDIX. FORMULAE FOR VARIOUS LIMITS OF POTENTIALS IN CONSOLIDATION
THEORY

This appendix summarizes several formulae for various limits of the potentials in Biot's theory. Interested
readers are referred to Nishimura and Kobayashi (1987, b) for the proofs.

(a) Space integrals with time-independent kernels
The results in Nishimura and Kobuvashi (19874) yield the following:

.I’T, ;n Uplx —y)s(y. 5} dS5 = J;n Uy {x,—yis(y. s} d§ (AD)

\ITJ‘D Six. ¥uly.s) dS = + }u(x...s)-&-vlpp[n S,(x, ~yialy.s) dS (A)

‘hn‘tj; Ug(x—=¥if(y. s} db = LU(.(x“—-)‘)ﬂy.s) di- (A}

\“T.,Jjn Py(x —y)Hy) dt" = J; Po(xo—¥)y) dV (Ad)

\h‘?Jn Valx—¥) siy.s1dS = + ; ;}';‘;d“;;;‘;i?}%‘)";'5(“;.&’) +~xp.J:" Vo{Xo—¥)s{y, ) dS (AS)

. ) . I [div Now ¥ —~A*! ClVu(x,, ¥
fim Tox.y) uly.s)dS = § ”»‘vu(-\-m—\)u- . v(n):\ (vl E“ n +ph ] Talxoy)uly y) dS
m 2 mA4nA* Han -

{AL)

-

lim J Vi —y) fly.s) dV = f Violx, = ¥)- iy, s) db” (AT
" i3

AR

{x,) +v.p. JQ.‘(N‘,~~}')1)(y) db, x,edD (AR
il

. I
lim | Qu(x - yiity) db” e ’(C'{,T mAnrA '(n)n)

AR PO 41

where the upper (lower) sign indicates the approach from the exterior (interior) of 2. v.p.  the principal value

integral defined by
v.p. s b = im d {AY)
I A s g

B(x.) a bull having a radius £ and centered at x,. and C, a number delined in eqn (201), rospectively. Note that
the upparent dependence of the non-integral term inegqn (A6} on Juidn is resolved by substituting Vu —a ® (fu'cn)
into Vu in eyn (A6). Also, the limiting vatues of these integrals as s | 0 are obtained by putting x = 0 on the right-
hand sides of eqns (A1) (AS).

(D) Space - time integrals
By using the method in Nishimura and Kobayashi (1987a), we can prove the following results for s > 0

limj f WXy, s—0sly. 1) de d§ = J‘ f Xy~ ¥y~ 0s(y. ) de dS (Al
N, o g0 il Jo

Iim.[ J SOy s =Duly. D) de ds = v.p.f j .’/"(x.,.y..\'-—l)u(y.l) dr dS (AL
LS W A 3 11} en jo

. . t. i *
lim hm [ f FASN—y =28y, ) drdS = T ( A (nin )'s(xu.s)
3

R Y Iim+n-A* “ﬂ)"

.

+V~P‘J J1"(x.,-—-y..v—1)'s(y.1) dedS (A1)
i fey

. M. t
lim Ty s=Druly ndrdS = + e
. -\,,_[‘n‘L x s ) “{3 ! - 2( m4+n-A* '(n)n

div u(x,. 5} - 4* ~"ta)n - C[Vux,, ,91.,)

~

+p.f.J J-.‘/"(x,,.y.,v——t)-u(y.l)dldS (AL}
i)

en
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limJ. j Wixy.s—npty.t)drdS=F {p(x,..s)é—v.p.f J‘ Wix,y.s—t)ply.t) de dS. x,ecD.
e, oo Jo o Ju
(Ald)

Other potentials in egns (26) and (27) satisfy relations similar to eqn (A10).

We next compute the limits of these limits as s tends to zero. One has to be careful in doing this because of
the possible singularity of r as § | 0. A computation taking this singularity into consideration yields (Nishimura
and Kobavashi, 1987b)

<. 1 A*~(n)n
1 1 F(X—y.s—1)°s(vy. =F - ———————}s(x,. 5
th ‘IT,J.DJ; (x—y.s—0)s(y.t)dedS = F ,(m o ‘_,(“m> $(x,.0) (AlS)

o C ) L[ div u(xa.5)—A* H{mn- C[Vu(x,.5)n
h:}.\ ‘IT_[/;J:. (X ¥ s—0uly. ) drdS = + 5( Y e (A16)
. divergent, —l<fi< —-12
lim limf QIx—y.s—0r(y.0) dt dS = { —(an-Kn)' *3(x)2m+n-A*""mn)' 3, fi=12 (AlT)
0N sy, b Jo
0. —-12<p

where f#and 7(x,) are the exponent of the lowest power and the corresponding coefficient of the asymptotic
expansion of (°p Cm)(x,. 1) near 1 = 0, i.e.

-

'fi(x...r) = 5(xp) + o) st )0 (AIR)
«r

lim limf f Wis.y.s—0ply. 1) dr dS = F ip(x,. 0. x,edD. (A19)
0w ey, Jen o

The limits of this form for other potentials in eyns (26) and (27) are seen to vanish,

(<€) Folume integrals with time-dependent kernels
Finally we have (Nishimura and Kobayashi, 1987h)

lim lim j P(x -y 0)(y) d} = J P(x, —y)i(y) dV (A20)
LT L YO 1 2 n
L ., Co . N 5
lim lim | Q(x-y.9)y)d¥V = R (x,)+v.p. Qulx, —)y) dV, x,eéD (A2
PICCRR IR Yo /1) - n

where C,and vop. are defined in eqns (20a) and (AY), respectively.



